Infragistics ASP.NET controls

Machine learning resources for .NET developers

Machine learning for .NET

Greetings friends and welcome to this article on Machine learning libraries for .NET developers.  Machine learning is a hot topic right now and for good reason.  Personally, I haven't been so excited about a technology since my computer used my 2800 baud modem to dial into a BBS over 17 years ago.  The thought that my computer could communicate with another computer was so fascinating to me.  That moment was the very moment that would forever change my life.  I learned a lot about DOS by writing batch scripts and running other programs that allowed me to visit and then run a BBS system.  It eventually lead me to QBasic.  I wanted to learn to write BBS door games and QBasic was included as a part of a standard DOS installation back then.

Fast forward 17 years and I'm still in love with computers, programming, and the concept of communication between machines.  The magic never disappeared.  So when i first learned about the concept of Machine learning, I felt like that 13 year old kid again.  The idea that a machine can learn to do things that it has not been programmed to do is now a passion of mine.  The concepts of Machine learning have an extreme learning curve, however, I believe that we as humans can do anything that we put our mind to.  So I began looking around for tutorials on machine learning.  I found many great tutorials and books, however, most of them involved using python.  I have nothing against python.  As a matter of fact, I find it ironic that I started with BASIC and now in this moment of "rebirth" I'm beginning to use python which looks a lot like BASIC in many ways.  The fact of the matter remains, I'm a .NET developer.  I've spent the last 9 years in the .NET framework and I love the technology.  C# is an awesome programming language and it's hard to imagine life without Visual Studio.  What can I say, the IDE has spoiled me.

While I scoured the internet looking for tutorials related to Machine learning resources for .NET developers, I wished that there was a one resource that would assist me in my search for resources to help me achieve my goal.

Well that's what this article is all about.  In this article, I will introduce you to some .NET libraries that will assist you in your quest to learn about Machine learning.

NND Neural Network Designer by Bragisoft

The Neural Network Designer project (NND) is a DBMS management system for neural networks that was created by Jan Bogaerts.  The designer application is developed using WPF, and is a user interface which allows you to design your neural network, query the network, create and configure chat bots that are capable of asking questions and learning from your feed back.  The chat bots can even scrape the internet for information to return in their output as well as to use for learning.  The project includes a custom language syntax called NNL (neural network language) that you can use in configuring your machine learning project.  The source code is designed so that the libraries can be used in your own custom applications so you don't have to start from scratch with such a complex set of technologies.  The project is actually an open source project in which I am a part of.  Some of the possibilities offered by this awesome project include predictions, image and pattern recognition, value inspection, memory profiling and much more.  Stop by the Bragisoft NND website and download the application to give it a try

 Screen shots of the neural network designer by Bragisoft

A DBMS for neural networks

A DBMS for neural networks

 

Mind map rand forrest

Machine learning

The chat bot designer and other tools

GUIs and debuggers

Accord.net

Here is a description from the Accord.NET project website 

Accord.NET is a framework for scientific computing in .NET. The framework builds upon AForge.NET, an also popular framework for image processing, supplying new tools and libraries. Those libraries encompass a wide range of scientific computing applications, such as statistical data processing, machine learning, pattern recognition, including but not limited to, computer vision and computer audition. The framework offers a large number of probability distributions, hypothesis tests, kernel functions and support for most popular performance measurements techniques.

 The most impressive parts of this library has got to be the documentation and sample applications that are distributed with the project.  This makes the library easy to get started using.  I also like the ability to perform operations like Audio processing (beat detection and more), Video processing (easy integration with your web cam, vision capabilities and object recognition).  This is an excellent place to start with approaching Machine learning with the .NET framework.  Here are a two videos that should whet your appetite.

Hand writing recognition with Accord.NET

 

Here is an example of head tracking with Accord.NET (super cool)

 

AIMLBot Program# AILM Chat bot library

AIMLBot (Program#) is a small, fast, standards-compliant yet easily customizable implementation of an AIML (Artificial Intelligence Markup Language) based chatter bot in C#. AIMLBot has been tested on both Microsoft's runtime environment and Mono. Put simply, it will allow you to chat (by entering text) with your computer using natural language.  The project is located here.

Math.NET

Machine learning algorithms are extremely math heavy.  Math.NET is a library  that can assist with the math that is required to solve machine learning related problems.

Math.NET Numerics aims to provide methods and algorithms for numerical computations in science, engineering and every day use. Covered topics include special functions, linear algebra, probability models, random numbers, interpolation, integral transforms and more.

DotNumerics

DotNumerics is a website dedicated to numerical computing for .NET. DotNumerics includes a Numerical Library for .NET. The library is written in pure C# and has more than 100,000 lines of code with the most advanced algorithms for Linear Algebra, Differential Equations and Optimization problems. The Linear Algebra library includes CSLapack, CSBlas and CSEispack, these libraries are the translation from Fortran to C# of LAPACK, BLAS and EISPACK, respectively.

You can find the library here. 

ALGLIB

ALGLIB is a cross-platform numerical analysis and data processing library. It supports several programming languages (C++, C#, Pascal, VBA) and several operating systems (Windows, Linux, Solaris). ALGLIB features include:

Accessing ‘R’ from C#–Lessons learned

Here are instructions to use the R statistical framework from within c#

ILNumerics

You can check out the library at http://www.ilnumerics.net

NuML.net http://numl.net

A nice site about the basics of machine learning in c# by Seth Juarez . NuML.NET is a machine learning library for .NET developers written by Seth Juarez.  I've recently tried this library and I'm impressed!  Seth has stated publicly that his intention behind the numl.net library is to abstract the scary math away from machine learning to provide tools that are more approachable by software developers and boy did he deliver!  I've been working with this library for a little more than an hour and I've written a prediction app in c#.  You can find his numl.net library source on github.

Encog Machine Learning Framework

Here is what the official Heaton Research website has to say about Encog:

Encog is an advanced machine learning framework that supports a variety of advanced algorithms, as well as support classes to normalize and process data. Machine learning algorithms such as Support Vector Machines, Artificial Neural Networks, Genetic Programming, Bayesian Networks, Hidden Markov Models and Genetic Algorithms are supported. Most Encog training algoritms are multi-threaded and scale well to multicore hardware. Encog can also make use of a GPU to further speed processing time. A GUI based workbench is also provided to help model and train machine learning algorithms. Encog has been in active development since 2008.

Encog is available for Java, .Net and C/C++.

Jeff Heaton knows a great deal about machine learning algorithms and he's created a wonderful library called Encog.  I was able to write a neural network application that solved the classic XOR problem in 20 minutes after installing the library.  What really amazes me is that he has an Encog Library for JavaScript which includes live samples on his website of Javascript + encog solving problems like the Traveling Salesman Problem and Conway's game of life, all in a browser!  This library can even use your GPU for the heavy lifting if that's your choice.  I would highly recommend that you at least check out his site and download the library to look at the examples.  You can find the Encog library here

 

Conclusion

This concludes my article on Machine learning resources for the .NET developer.  If you have any suggestions regarding a project that you know of or you are working on related to Machine learning in .NET, please don't hesitate to leave a comment and I will update the article to mention the project.  This article has shown that we as .NET developers have many resources available to us to use to implement Machine learning based solutions.  I appreciate your time in reading this article and I hope you found it useful.  Please subscribe to my RSS feed.  Until next time..

Buddy James



Comments (6) -

Seth Juarez
Seth Juarez
3/4/2013 11:11:59 AM #

Hey! I also made something: http://numl.net.

Buddy James
Buddy James
3/9/2013 4:22:53 AM #

Seth,

Thank you for contributing.  I'm going to add your project to my list.

The code looks great.  The site design is really awesome too!  Kudos!

Buddy James

terrell26
terrell26
3/21/2013 12:44:32 PM #

You seem to know a great deal about this subject

Buddy James
Buddy James
3/21/2013 5:33:28 PM #

I appreciate the compliment.  I'm very passionate about machine learning and I'm constantly learning.

Thanks again!

Buddy James

Don Syme
Don Syme
7/2/2013 4:46:37 AM #

Great links!

For F# developers (or C# developers adding an F# project to their solution) see also  

    http://fsharp.org/machine-learning

Buddy James
Buddy James
7/4/2013 8:37:45 PM #

Thanks for reading @Don.  I hear great things about F# and machine learning.  F# is on my list of languages to learn.  Thanks again!

Buddy

Pingbacks and trackbacks (1)+

Add comment

  Country flag

biuquote
  • Comment
  • Preview
Loading

About the author

My name is Buddy James.  I'm a Microsoft Certified Solutions Developer from the Nashville, TN area.  I'm a Software Engineer, an author, a blogger (http://www.refactorthis.net), a mentor, a thought leader, a technologist, a data scientist, and a husband.  I enjoy working with design patterns, data mining, c#, WPF, Silverlight, WinRT, XAML, ASP.NET, python, CouchDB, RavenDB, Hadoop, Android(MonoDroid), iOS (MonoTouch), and Machine Learning. I love technology and I love to develop software, collect data, analyze the data, and learn from the data.  When I'm not coding,  I'm determined to make a difference in the world by using data and machine learning techniques. (follow me at @budbjames).  

Related links

Month List

refactorthis.net | Machine Learning: 5 examples of what it is and why you should care
Infragistics WPF controls

Machine Learning: 5 examples of what it is and why you should care

Machine learning examples to make you think

Johnny #5 loves machine learning

Hello folks, and welcome to another awe inspiring article from refactorthis.net .  This article is one that I'm very excited to present.  I'm sure you've guessed by now that the topic of this post is Machine learning.   If you don't know what machine learning is or don't care, I ask you to take a look at the fascinating examples that I've presented in this article.  You just may get inspired.  

Background

I'm a .NET developer and I have experience working in a myriad of different business domains.  My love affair with machine learning was brought about while I was working for an e-commerce website.  My boss had asked me to look into a new API that Google had released in beta at the time that would allow you to provide data about your customers and it would suggest products based on their shopping data.  That API is called Google prediction and you can read about the Google prediction API here. 

It's been a couple of years since I was introduced to this technology and since that time I've contemplated how machine learning algorithms work and what possibilities they could unlock with the right amount of data and creativity.

Since then I've done a lot of reading, and planning on ways that I can collect data to use in my journey to learn as much as I can about this new frontier that we as software developers are facing.  I was fortunate enough become the first accepted team member of the open source project called NND, or Neural Network Designer by Bragisoft.  Check back soon for an article dedicated to this wonderful open source project on machine learning and neural networks.

Proceed with caution

Let it be known, however, that machine learning algorithms are not for the faint of heart.  This is a very complex array of concepts and I don't plan to  try to explain them in this article.  What I will do is give a brief, simple introduction to a few of the prevalent topics that one would need to research in order to implement machine learning algorithms.  The main purpose of this article is to provide some wonderful youtube videos that provide insight into the possibilities of machine learning and it's practical applications.  Some of the videos just may blow your mind!

So without further ado, let's bring forth the videos!

A glimpse at the future to whet your appetite 

This first video is full of commentary and stunning examples of robots that lack brains but are capable of learning by way of a design that mimics a central nervous system.  Although the video depicts the future as something to be worried about, it's still a great, non technical introduction to whet your appetite and make way for the other more specific videos that are focused on simulations and applications of machine learning.

Watch a simulation of robots that learn to drive

In this video, we see a software demonstration of animated robots that start with no knowledge of a driving course.  Watch what happens as the simulation is processed repeatedly, allowing the robots to learn the course with each generation.  Buckle up!

Hey Darwin, what do you think of this?

This next video is progressively more complex, however, the simulation clearly shows how a collection of bots act as they evolve.  The bots  can attack each other with the intent of killing and eating each other to sustain life.  They also reproduce to make baby bots.  Take a look at this awesome example of machine learning..

Virtual Darwinism take two

This next video is another representation of virtual evolution by machine learning techniques.  Watch block like organisms learn to fight each other over a virtual cube that represents a block of food.  

Machine learning for pattern matching and recognition

This video shows an application that will render CAPTCHA verification methods obsolete.  I have a decent amount of experience working with OCR engines however, this is the most accurate recognition I've ever seen.

Show and tell

This concludes my article on machine learning examples.  I hope you enjoyed the article and that it has peaked your interest in machine learning.  Do you have a favorite video or application that demonstrates machine learning, neural networks, prediction algorithms, pattern matching or some other related technology?  If so, we'd love to hear about it so please leave a comment with a link.

Thanks for reading,

Buddy James

kick it on DotNetKicks.com



Comments (2) -

karz
karz
2/20/2013 9:30:21 AM #

Thanks for sharing the great article James.
Hope we can get more articles about this topic.
Cheers...

Buddy James
Buddy James
2/25/2013 7:16:53 PM #

I am glad you found it interesting.  I plan to write a lot more on the subject.

Thanks for reading!

Buddy

Pingbacks and trackbacks (3)+

Add comment

  Country flag

biuquote
  • Comment
  • Preview
Loading

About the author

My name is Buddy James.  I'm a Microsoft Certified Solutions Developer from the Nashville, TN area.  I'm a Software Engineer, an author, a blogger (http://www.refactorthis.net), a mentor, a thought leader, a technologist, a data scientist, and a husband.  I enjoy working with design patterns, data mining, c#, WPF, Silverlight, WinRT, XAML, ASP.NET, python, CouchDB, RavenDB, Hadoop, Android(MonoDroid), iOS (MonoTouch), and Machine Learning. I love technology and I love to develop software, collect data, analyze the data, and learn from the data.  When I'm not coding,  I'm determined to make a difference in the world by using data and machine learning techniques. (follow me at @budbjames).  

Related links

Month List